
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 13 – Functions

Prof. Jeremy Dixon

Based on concepts from: http://mcsp.wartburg.edu/zelle/python/ppics2/index.html

www.umbc.edu

Last Class We Covered
• Midterm exam

– Comments?
– Concerns?

• Exam review will be October 28th/29th

www.umbc.edu

Today’s Objectives
• To learn why you would want to divide your code

into smaller, more specific pieces (functions!)
• To be able to define new functions in Python
• To understand the details of function calls and

parameter passing in Python
• To use functions to reduce code duplication and

increase program modularity

www.umbc.edu

Control Structures (Review)
• A program can proceed:

– In sequence
– Selectively (branching): make a choice
– Repetitively (iteratively): looping
– By calling a function

focus of
today’s lecture

www.umbc.edu

Introduction to Functions

www.umbc.edu

Functions We’ve Seen
• We’ve actually seen (and been using) two

different types of functions already!

– Our program’s code is contained completely inside
the main() function

– Built-in Python functions
• For example: split(), print(), casting, etc.

www.umbc.edu

Parts of a Function

def main():
a = 5
print(a)
type(a)

main()

calls “print” functionfunction
body

use “def” to
create a function

calls “type” function

calls “main”

bash-4.1$ python test.py
5
<class 'int'>
bash-4.1$

The output:

www.umbc.edu

Why Use Functions?
• Having identical (or similar) code in more than

one place has various downsides:
1. Don’t want to write the same code twice (or more)
2. The code must be maintained in multiple places
3. Code is harder to understand with big blocks of

repeated code everywhere
• Functions reduce code duplication and make

programs more easy to understand and maintain

www.umbc.edu

What are Functions?
• A function is like a subprogram

– A small program inside of a program
• The basic idea:

– We write a sequence of statements
– And give that sequence a name
– We can execute this sequence at any time

by referring to the sequence’s name

www.umbc.edu

Function Vocabulary
• Function definition:

– The part of the program that creates a function
– For example: “def main():”

• Function call (or function invocation):
– When the function is used in a program
– For example: “main()” or “print("Hello")”

www.umbc.edu

Example Function

www.umbc.edu

“Happy Birthday” Program
• Happy Birthday lyrics…

def main():
print("Happy birthday to you!")
print("Happy birthday to you!")
print("Happy birthday, dear Fred...")
print("Happy birthday to you!")

• Gives us this…
>>> main()
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!

www.umbc.edu

Simplifying with Functions
• A lot of this code is repeated (duplicate code)

print("Happy birthday to you!")

• We can define a function to print out that line
def happy():

print("Happy birthday to you!")

• We can update our program to use this function

www.umbc.edu

Updated “Happy Birthday” Program
• The updated program:

def happy():
print("Happy birthday to you!")

def main():
happy()
happy()
print("Happy birthday, dear Fred...")
happy()

main()

www.umbc.edu

More Simplifying
• Even this version is a bit repetitive
• We could write a separate function that sings

“Happy Birthday” to Fred, and call it in main()

def singFred():
happy()
happy()
print("Happy birthday, dear Fred...")
happy()

www.umbc.edu

New Updated Program
• The new updated program:

def happy():
print("Happy birthday to you!")

def singFred():
happy()
happy()
print("Happy birthday, dear Fred...")
happy()

def main():
singFred() # sing Happy Birthday to Fred

main()

www.umbc.edu

Updated Program Output
bash-4.1$ python birthday.py
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!
bash-4.1$

www.umbc.edu

Someone Else’s Birthday
• Creating this function saved us a lot of typing!

• What if it’s Lucy’s birthday?
– We could write a new singLucy() function!

def singLucy():
happy()
happy()
print("Happy birthday, dear Lucy...")
happy()

www.umbc.edu

“Happy Birthday” Functions
def happy():

print("Happy birthday to you!")
def singFred():

happy()
happy()
print("Happy birthday, dear Fred...")
happy()

def singLucy():
happy()
happy()
print("Happy birthday, dear Lucy...")
happy()

def main():
singFred() # sing Happy Birthday to Fred
print() # empty line between the two
singLucy() # sing Happy Birthday to Lucy

main()

www.umbc.edu

Updated Program Output
bash-4.1$ python birthday2.py
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Lucy...
Happy birthday to you!
bash-4.1$

www.umbc.edu

Multiple Birthdays
• This is much easier to read and use!
• But… there’s still a lot of code duplication

• The only difference between singFred()
and singLucy() is ...
– the name in the third print() statement

• We could combine these two functions by
using something called a parameter

www.umbc.edu

Function Parameters

www.umbc.edu

What is a Parameter?
• A parameter is a variable that is initialized

when we call a function
• We can create a generic sing() function

that takes in a person’s name as a parameter

def sing(person):
happy()
happy()
print("Happy birthday, dear", person + "...")
happy()

parameter

www.umbc.edu

“Happy Birthday” with Parameters
def happy():

print("Happy birthday to you!")

def sing(person):
happy()
happy()
print("Happy birthday, dear", person + "...")
happy()

def main():
sing("Fred")
print()
sing("Lucy")

main()

www.umbc.edu

“Happy Birthday” with Parameters
def happy():

print("Happy birthday to you!")

def sing(person):
happy()
happy()
print("Happy birthday, dear", person + "...")
happy()

def main():
sing("Fred")
print()
sing("Lucy")

main()

parameter passed in parameter
being used

function call with parameter

function call with parameter

www.umbc.edu

Updated Program Output
bash-4.1$ python birthday3.py
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
Happy birthday to you!

Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Lucy...
Happy birthday to you!
bash-4.1$

This looks the
same as before!

That’s fine! We
wanted to make our
code easier to read
and use, not change

the way it works.

www.umbc.edu

Exercise: Prompt for Name
• How would we update the code in main() to

ask the user for the name of the person?
– Current code looks like this:

def main():

sing("Fred")
main()

www.umbc.edu

Solution: Prompt for Name
• How would we update the code in main() to

ask the user for the name of the person?
– Updated code looks like this:

def main():
birthdayName = input("Whose birthday? ")
sing(birthdayName)

main()
Nothing else needs to change – and the

sing() function stays the same

www.umbc.edu

Exercise Output
bash-4.1$ python birthday4.py
Whose birthday? UMBC
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear UMBC...
Happy birthday to you!
bash-4.1$

www.umbc.edu

How Parameters Work

www.umbc.edu

Functions and Parameters
• Each function is its own little subprogram

– Variables used inside of a function
are local to that function

– Even if they have the same name as
variables that appear outside that function

• The only way for a function to see a variable
from outside itself is for that variable to be
passed as a parameter

www.umbc.edu

Function Syntax with Parameters
• A function definition looks like this:

def fnxName(formalParameters):
body of the function

function name: follows same
syntax rules as variable names

(no special characters, can’t start
with a number, no keywords, etc.)

the formal parameters that the
function takes in – can be empty!

www.umbc.edu

Formal Parameters
• The formal parameters, like all variables used

in the function, are only accessible in the body
of the function

• Variables with identical names elsewhere in
the program are distinct from those inside the
function body
– We often call this the “scope” of a variable

www.umbc.edu

Example of Scope
• This is our president, Freeman A. Hrabowski III

– According to Wikipedia, he is a “a prominent
American educator, advocate, and mathematician”
and has been the President of UMBC since 1992

www.umbc.edu

Example of Scope
• This is my (fictional) dog, a Chesapeake Bay

Retriever also named Hrabowski
– He is super cute, knows tons

of tricks, and likes to beg for
scraps from the dinner table

– He also loves to spin in circles
while chasing his tail

www.umbc.edu

Example of Scope
• We have two very different things, both of

which are called Hrabowski:
– UMBC’s President Hrabowski
– My (fictional) dog Hrabowski

• If you go outside this classroom and tell
someone that “Hrabowski knows tons of
tricks and loves to chase his tail,” people
will be very confused (to say the least)

www.umbc.edu

Example of Scope
• In the same way, a variable called person

inside a function like sing() is a completely
different thing from person in main()

• The sing() function has one idea of what the
person variable is, and main() has another

• It depends on the context, or “scope” we are in

www.umbc.edu

Calling Functions with Parameters

www.umbc.edu

Calling with Parameters
• In order to call a function with parameters,

use its name followed by a list of variables

myFunction("my string", 17)

• These variables are the actual parameters, or
arguments, that are passed to the function

www.umbc.edu

Python and Function Calls
• When Python comes to a function call, it

initiates a four-step process:
1. Calling program suspends execution at

the point of the call.
2. The formal parameters of the function

get assigned the values supplied by the
actual parameters in the call

3. The body of the function is executed.
4. Control returns to the point just after

where the function was called

www.umbc.edu

Code Trace: Parameters
• Let’s trace through the following code:

sing("Fred")
print()
sing("Lucy")

• When Python gets to the line sing("Fred"),
execution of main is temporarily suspended

• Python looks up the definition of sing() and
sees it has one formal parameter, person

www.umbc.edu

Code Trace: Parameters
def happy():

print("Happy birthday to you!")
def sing(person):

happy()
happy()
print("Happy birthday, dear", person + "...")
happy()

def main():
sing("Fred")
print()
sing("Lucy")

main()

actual parameter

actual parameter

formal parameter

www.umbc.edu

Initializing Formal Parameters
• The formal parameter is assigned the value of

the actual parameter

• When we call sing("Fred"), it as if the
following statement was executed in sing()

person = "Fred"

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

person = "Fred"

person: "Fred"

Note that the variable person
has been initialized in sing()

www.umbc.edu

Code Trace: Parameters
• Next, Python begins executing the

body of the sing() function
– First statement is another function call, to
happy() – what does Python do now?

– Python suspends the execution of sing()
and transfers control to happy()

– The happy() function is a single print(),
which is executed

– Control returns to where it left off in sing()

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

person =
"Fred"

person: "Fred"

def happy():
print("Happy BDay to you!")

www.umbc.edu

Code Trace: Parameters
• Execution continues in this way with

two more trips to the happy() function

• When Python gets to the end of sing(),
control returns to...
–main(), which picks up where it

left off, on the line immediately
following the function call

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

person =
"Fred"

person: "Fred"

def happy():
print("Happy BDay to you!")

Note that the person variable
in sing() disappeared!

www.umbc.edu

Local Variables
• When a function exits, the local variables (like
person) are deleted from memory

• If we call sing() again, person will have to
be re-initialized
– Local variables do not retain their value

between function executions

www.umbc.edu

Code Trace: Parameters
• Next statement is the empty call to print(),

which simply produces a blank line

• Python sees another call to sing(), so...
– Control transfers to…

the sing() function
– With the actual parameter...

“Lucy”

www.umbc.edu

Visual Code Trace
def main():

sing("Fred")
print()
sing("Lucy")

def sing(person):
happy()
print("Happy BDay", person)
happy()
happy()

person = "Lucy"

person: "Lucy"

The body of sing() is executed with
the argument “Lucy”

This includes its three side trips to happy()
Control then returns to main()

www.umbc.edu

Multiple Parameters

www.umbc.edu

Multiple Parameters
• One thing we haven’t discussed is functions

with multiple parameters

• When a function has more than one
parameter, the formal and actual parameters
are matched up based on position
– First actual parameter becomes the

first formal parameter, etc.

www.umbc.edu

Multiple Parameters in sing()
• Let’s add a second parameter to sing() that

will take in the person’s age as well
• And print out their age in the song

def sing(person, age):
happy()
happy()
print("Happy birthday, dear", person, "...")
print("You're already", age, "years old...")
happy()

www.umbc.edu

Multiple Parameters in sing()
• What will happen if we use the following call

to the sing() function in main()?

def main():
sing("Fred", 46)

main()

• It will print out:
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear Fred...
You're only 46 years old...
Happy birthday to you!

www.umbc.edu

Assigning Parameters
• Python is simply assigning the first actual

argument to the first formal argument, etc.

sing("Fred", 46) # function call

def sing(person, age):
function body goes here

www.umbc.edu

Parameters Out-of-Order
• What will happen if we use the following call

to the sing() function in main()?

def main():
sing(46, "Fred")

main()

• It will print out:
Happy birthday to you!
Happy birthday to you!
Happy birthday, dear 46...
You're only Fred years old...
Happy birthday to you!

www.umbc.edu

Parameters Out-of-Order
• Python isn’t smart enough to figure out

what you meant for your code to do
– It only understands what the code says

• That’s why it matches up actual and formal
parameters based solely on their order

www.umbc.edu

Any Other Questions?

www.umbc.edu

Announcements
• We’ll go over the exam in class

on October 28th and 29th

• Homework 6 is out
– Due by Thursday (Oct 22nd) at 8:59:59 PM

• Homework 7 will be out Oct 22nd
• Project 1 will be out Oct 29th

	CMSC201� Computer Science I for Majors��Lecture 13 – Functions
	Last Class We Covered
	Today’s Objectives
	Control Structures (Review)
	Introduction to Functions
	Functions We’ve Seen
	Parts of a Function
	Why Use Functions?
	What are Functions?
	Function Vocabulary
	Example Function
	“Happy Birthday” Program
	Simplifying with Functions
	Updated “Happy Birthday” Program
	More Simplifying
	New Updated Program
	Updated Program Output
	Someone Else’s Birthday
	“Happy Birthday” Functions
	Updated Program Output
	Multiple Birthdays
	Function Parameters
	What is a Parameter?
	“Happy Birthday” with Parameters
	“Happy Birthday” with Parameters
	Updated Program Output
	Exercise: Prompt for Name
	Solution: Prompt for Name
	Exercise Output
	How Parameters Work
	Functions and Parameters
	Function Syntax with Parameters
	Formal Parameters
	Example of Scope
	Example of Scope
	Example of Scope
	Example of Scope
	Calling Functions with Parameters
	Calling with Parameters
	Python and Function Calls
	Code Trace: Parameters
	Code Trace: Parameters
	Initializing Formal Parameters
	Visual Code Trace
	Visual Code Trace
	Code Trace: Parameters
	Visual Code Trace
	Code Trace: Parameters
	Visual Code Trace
	Local Variables
	Code Trace: Parameters
	Visual Code Trace
	Multiple Parameters
	Multiple Parameters
	Multiple Parameters in sing()
	Multiple Parameters in sing()
	Assigning Parameters
	Parameters Out-of-Order
	Parameters Out-of-Order
	Any Other Questions?
	Announcements

